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1

Introduction

Bose–Einstein condensates in dilute atomic gases, which were first realized
experimentally in 1995 for rubidium [1], sodium [2], and lithium [3], provide
unique opportunities for exploring quantum phenomena on a macroscopic
scale.1 These systems differ from ordinary gases, liquids, and solids in a
number of respects, as we shall now illustrate by giving typical values of
some physical quantities.

The particle density at the centre of a Bose–Einstein condensed atomic
cloud is typically 1013–1015 cm−3. By contrast, the density of molecules
in air at room temperature and atmospheric pressure is about 1019 cm−3.
In liquids and solids the density of atoms is of order 1022 cm−3, while the
density of nucleons in atomic nuclei is about 1038 cm−3.

To observe quantum phenomena in such low-density systems, the tem-
perature must be of order 10−5 K or less. This may be contrasted with
the temperatures at which quantum phenomena occur in solids and liquids.
In solids, quantum effects become strong for electrons in metals below the
Fermi temperature, which is typically 104–105 K, and for phonons below
the Debye temperature, which is typically of order 102 K. For the helium
liquids, the temperatures required for observing quantum phenomena are of
order 1 K. Due to the much higher particle density in atomic nuclei, the
corresponding degeneracy temperature is about 1011 K.

The path that led in 1995 to the first realization of Bose–Einstein con-
densation in dilute gases exploited the powerful methods developed over the
past quarter of a century for cooling alkali metal atoms by using lasers. Since
laser cooling alone cannot produce sufficiently high densities and low tem-
peratures for condensation, it is followed by an evaporative cooling stage, in

1 Numbers in square brackets are references, to be found at the end of each chapter.
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2 Introduction

which the more energetic atoms are removed from the trap, thereby cooling
the remaining atoms.

Cold gas clouds have many advantages for investigations of quantum phe-
nomena. A major one is that in the Bose–Einstein condensate, essentially all
atoms occupy the same quantum state, and the condensate may be described
very well in terms of a mean-field theory similar to the Hartree–Fock theory
for atoms. This is in marked contrast to liquid 4He, for which a mean-field
approach is inapplicable due to the strong correlations induced by the inter-
action between the atoms. Although the gases are dilute, interactions play
an important role because temperatures are so low, and they give rise to
collective phenomena related to those observed in solids, quantum liquids,
and nuclei. Experimentally the systems are attractive ones to work with,
since they may be manipulated by the use of lasers and magnetic fields. In
addition, interactions between atoms may be varied either by using different
atomic species, or, for species that have a Feshbach resonance, by changing
the strength of an applied magnetic or electric field. A further advantage
is that, because of the low density, ‘microscopic’ length scales are so large
that the structure of the condensate wave function may be investigated di-
rectly by optical means. Finally, real collision processes play little role, and
therefore these systems are ideal for studies of interference phenomena and
atom optics.

The theoretical prediction of Bose–Einstein condensation dates back more
than 75 years. Following the work of Bose on the statistics of photons [4],
Einstein considered a gas of non-interacting, massive bosons, and concluded
that, below a certain temperature, a finite fraction of the total number of
particles would occupy the lowest-energy single-particle state [5]. In 1938
Fritz London suggested the connection between the superfluidity of liquid
4He and Bose–Einstein condensation [6]. Superfluid liquid 4He is the pro-
totype Bose–Einstein condensate, and it has played a unique role in the
development of physical concepts. However, the interaction between helium
atoms is strong, and this reduces the number of atoms in the zero-momentum
state even at absolute zero. Consequently it is difficult to measure directly
the occupancy of the zero-momentum state. It has been investigated ex-
perimentally by neutron scattering measurements of the structure factor at
large momentum transfers [7], and the measurements are consistent with a
relative occupation of the zero-momentum state of about 0.1 at saturated
vapour pressure and about 0.05 near the melting curve [8].

The fact that interactions in liquid helium reduce dramatically the oc-
cupancy of the lowest single-particle state led to the search for weakly-
interacting Bose gases with a higher condensate fraction. The difficulty with
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most substances is that at low temperatures they do not remain gaseous,
but form solids, or, in the case of the helium isotopes, liquids, and the
effects of interaction thus become large. In other examples atoms first com-
bine to form molecules, which subsequently solidify. As long ago as in 1959
Hecht [9] argued that spin-polarized hydrogen would be a good candidate
for a weakly-interacting Bose gas. The attractive interaction between two
hydrogen atoms with their electronic spins aligned was then estimated to
be so weak that there would be no bound state. Thus a gas of hydrogen
atoms in a magnetic field would be stable against formation of molecules
and, moreover, would not form a liquid, but remain a gas to arbitrarily low
temperatures.

Hecht’s paper was before its time and received little attention, but his
conclusions were confirmed by Stwalley and Nosanow [10] in 1976, when im-
proved information about interactions between spin-aligned hydrogen atoms
was available. These authors also argued that because of interatomic inter-
actions the system would be a superfluid as well as being Bose–Einstein
condensed. This latter paper stimulated the quest to realize Bose–Einstein
condensation in atomic hydrogen. Initial experimental attempts used a
high magnetic field gradient to force hydrogen atoms against a cryogeni-
cally cooled surface. In the lowest-energy spin state of the hydrogen atom,
the electron spin is aligned opposite the direction of the magnetic field (H↓),
since then the magnetic moment is in the same direction as the field. Spin-
polarized hydrogen was first stabilized by Silvera and Walraven [11]. Interac-
tions of hydrogen with the surface limited the densities achieved in the early
experiments, and this prompted the Massachusetts Institute of Technology
(MIT) group led by Greytak and Kleppner to develop methods for trapping
atoms purely magnetically. In a current-free region, it is impossible to create
a local maximum in the magnitude of the magnetic field. To trap atoms by
the Zeeman effect it is therefore necessary to work with a state of hydrogen
in which the electronic spin is polarized parallel to the magnetic field (H↑).
Among the techniques developed by this group is that of evaporative cooling
of magnetically trapped gases, which has been used as the final stage in all
experiments to date to produce a gaseous Bose–Einstein condensate. Since
laser cooling is not feasible for hydrogen, the gas is precooled cryogenically.
After more than two decades of heroic experimental work, Bose–Einstein
condensation of atomic hydrogen was achieved in 1998 [12].

As a consequence of the dramatic advances made in laser cooling of alkali
atoms, such atoms became attractive candidates for Bose–Einstein conden-
sation, and they were used in the first successful experiments to produce
a gaseous Bose–Einstein condensate. Other atomic species, among them
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noble gas atoms in excited states, are also under active investigation, and
in 2001 two groups produced condensates of metastable 4He atoms in the
lowest spin-triplet state [13, 14].

The properties of interacting Bose fluids are treated in many texts. The
reader will find an illuminating discussion in the volume by Nozières and
Pines [15]. A collection of articles on Bose–Einstein condensation in various
systems, prior to its discovery in atomic vapours, is given in [16], while
more recent theoretical developments have been reviewed in [17]. The 1998
Varenna lectures describe progress in both experiment and theory on Bose–
Einstein condensation in atomic gases, and contain in addition historical
accounts of the development of the field [18]. For a tutorial review of some
concepts basic to an understanding of Bose–Einstein condensation in dilute
gases see Ref. [19].

1.1 Bose–Einstein condensation in atomic clouds

Bosons are particles with integer spin. The wave function for a system
of identical bosons is symmetric under interchange of any two particles.
Unlike fermions, which have half-odd-integer spin and antisymmetric wave
functions, bosons may occupy the same single-particle state. An order-
of-magnitude estimate of the transition temperature to the Bose–Einstein
condensed state may be made from dimensional arguments. For a uniform
gas of free particles, the relevant quantities are the particle mass m, the
number density n, and the Planck constant h = 2π~. The only energy
that can be formed from ~, n, and m is ~

2n2/3/m. By dividing this energy
by the Boltzmann constant k we obtain an estimate of the condensation
temperature Tc,

Tc = C
~

2n2/3

mk
. (1.1)

Here C is a numerical factor which we shall show in the next chapter to
be equal to approximately 3.3. When (1.1) is evaluated for the mass and
density appropriate to liquid 4He at saturated vapour pressure one obtains
a transition temperature of approximately 3.13 K, which is close to the
temperature below which superfluid phenomena are observed, the so-called
lambda point2 (Tλ= 2.17 K at saturated vapour pressure).

An equivalent way of relating the transition temperature to the parti-
cle density is to compare the thermal de Broglie wavelength λT with the

2 The name lambda point derives from the measured shape of the specific heat as a function of
temperature, which near the transition resembles the Greek letter λ.
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mean interparticle spacing, which is of order n−1/3. The thermal de Broglie
wavelength is conventionally defined by

λT =
(

2π~
2

mkT

)1/2

. (1.2)

At high temperatures, it is small and the gas behaves classically. Bose–
Einstein condensation in an ideal gas sets in when the temperature is so low
that λT is comparable to n−1/3. For alkali atoms, the densities achieved
range from 1013 cm−3 in early experiments to 1014–1015 cm−3 in more re-
cent ones, with transition temperatures in the range from 100 nK to a few
µK. For hydrogen, the mass is lower and the transition temperatures are
correspondingly higher.

In experiments, gases are non-uniform, since they are contained in a trap,
which typically provides a harmonic-oscillator potential. If the number of
particles is N , the density of gas in the cloud is of order N/R3, where the
size R of a thermal gas cloud is of order (kT/mω2

0)
1/2, ω0 being the angu-

lar frequency of single-particle motion in the harmonic-oscillator potential.
Substituting the value of the density n ∼ N/R3 at T = Tc into Eq. (1.1),
one sees that the transition temperature is given by

kTc = C1~ω0N
1/3, (1.3)

where C1 is a numerical constant which we shall later show to be approx-
imately 0.94. The frequencies for traps used in experiments are typically
of order 102 Hz, corresponding to ω0 ∼ 103 s−1, and therefore, for parti-
cle numbers in the range from 104 to 107, the transition temperatures lie
in the range quoted above. Estimates of the transition temperature based
on results for a uniform Bose gas are therefore consistent with those for a
trapped gas.

In the original experiment [1] the starting point was a room-temperature
gas of rubidium atoms, which were trapped and cooled to about 10 µK
by bombarding them with photons from laser beams in six directions –
front and back, left and right, up and down. Subsequently the lasers were
turned off and the atoms trapped magnetically by the Zeeman interaction
of the electron spin with an inhomogeneous magnetic field. If we neglect
complications caused by the nuclear spin, an atom with its electron spin
parallel to the magnetic field is attracted to the minimum of the magnetic
field, while one with its electron spin antiparallel to the magnetic field is
repelled. The trapping potential was provided by a quadrupole magnetic
field, upon which a small oscillating bias field was imposed to prevent loss
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of particles at the centre of the trap. Some more recent experiments have
employed other magnetic field configurations.

In the magnetic trap the cloud of atoms was cooled further by evapora-
tion. The rate of evaporation was enhanced by applying a radio-frequency
magnetic field which flipped the electronic spin of the most energetic atoms
from up to down. Since the latter atoms are repelled by the trap, they es-
cape, and the average energy of the remaining atoms falls. It is remarkable
that no cryogenic apparatus was involved in achieving the record-low tem-
peratures in the experiment [1]. Everything was held at room temperature
except the atomic cloud, which was cooled to temperatures of the order of
100 nK.

So far, Bose–Einstein condensation has been realized experimentally in
dilute gases of rubidium, sodium, lithium, hydrogen, and metastable helium
atoms. Due to the difference in the properties of these atoms and their
mutual interaction, the experimental study of the condensates has revealed
a range of fascinating phenomena which will be discussed in later chapters.
The presence of the nuclear and electronic spin degrees of freedom adds
further richness to these systems when compared with liquid 4He, and it gives
the possibility of studying multi-component condensates. From a theoretical
point of view, much of the appeal of Bose–Einstein condensed atomic clouds
stems from the fact that they are dilute in the sense that the scattering
length is much less than the interparticle spacing. This makes it possible to
calculate the properties of the system with high precision. For a uniform
dilute gas the relevant theoretical framework was developed in the 1950s and
60s, but the presence of a confining potential – essential to the observation
of Bose–Einstein condensation in atomic clouds – gives rise to new features
that are absent for uniform systems.

1.2 Superfluid 4He

Many of the concepts used to describe properties of quantum gases were
developed in the context of liquid 4He. The helium liquids are exceptions to
the rule that liquids solidify when cooled to sufficiently low temperatures,
because the low mass of the helium atom makes the zero-point energy large
enough to overcome the tendency to crystallization. At the lowest temper-
atures the helium liquids solidify only under a pressure in excess of 25 bar
(2.5 MPa) for 4He and 34 bar for the lighter isotope 3He.

Below the lambda point, liquid 4He becomes a superfluid with many re-
markable properties. One of the most striking is the ability to flow through
narrow channels without friction. Another is the existence of quantized vor-
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ticity, the quantum of circulation being given by h/m (= 2π~/m). The
occurrence of frictionless flow led Landau and Tisza to introduce a two-fluid
description of the hydrodynamics. The two fluids – the normal and the
superfluid components – are interpenetrating, and their densities depend
on temperature. At very low temperatures the density of the normal com-
ponent vanishes, while the density of the superfluid component approaches
the total density of the liquid. The superfluid density is therefore generally
quite different from the density of particles in the condensate, which for liq-
uid 4He is only about 10 % or less of the total, as mentioned above. Near the
transition temperature to the normal state the situation is reversed: here
the superfluid density tends towards zero as the temperature approaches the
lambda point, while the normal density approaches the density of the liquid.

The properties of the normal component may be related to the elemen-
tary excitations of the superfluid. The concept of an elementary excitation
plays a central role in the description of quantum systems. In an ideal gas
an elementary excitation corresponds to the addition of a single particle in
a momentum eigenstate. Interactions modify this picture, but for low ex-
citation energies there still exist excitations with well-defined energies. For
small momenta the excitations in liquid 4He are sound waves or phonons.
Their dispersion relation is linear, the energy ε being proportional to the
magnitude of the momentum p,

ε = sp, (1.4)

where the constant s is the velocity of sound. For larger values of p, the
dispersion relation shows a slight upward curvature for pressures less than
18 bar, and a downward one for higher pressures. At still larger momenta,
ε(p) exhibits first a local maximum and subsequently a local minimum. Near
this minimum the dispersion relation may be approximated by

ε(p) = ∆ +
(p − p0)2

2m∗ , (1.5)

where m∗ is a constant with the dimension of mass and p0 is the momen-
tum at the minimum. Excitations with momenta close to p0 are referred
to as rotons. The name was coined to suggest the existence of vorticity
associated with these excitations, but they should really be considered as
short-wavelength phonon-like excitations. Experimentally, one finds at zero
pressure that m∗ is 0.16 times the mass of a 4He atom, while the constant
∆, the energy gap, is given by ∆/k = 8.7 K. The roton minimum occurs at
a wave number p0/~ equal to 1.9 × 108 cm−1 (see Fig. 1.1). For excitation
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p
0

∆

p

ε

Fig. 1.1. The spectrum of elementary excitations in superfluid 4He. The minimum
roton energy is ∆, corresponding to the momentum p0.

energies greater than 2∆ the excitations become less well-defined since they
can decay into two rotons.

The elementary excitations obey Bose statistics, and therefore in thermal
equilibrium the distribution function f0 for the excitations is given by

f0 =
1

eε(p)/kT − 1
. (1.6)

The absence of a chemical potential in this distribution function is due to the
fact that the number of excitations is not a conserved quantity: the energy of
an excitation equals the difference between the energy of an excited state and
the energy of the ground state for a system containing the same number of
particles. The number of excitations therefore depends on the temperature,
just as the number of phonons in a solid does. This distribution function
Eq. (1.6) may be used to evaluate thermodynamic properties.

1.3 Other condensates
The concept of Bose–Einstein condensation finds applications in many sys-
tems other than liquid 4He and the clouds of spin-polarized boson alkali
atoms, atomic hydrogen, and metastable helium atoms discussed above. His-
torically, the first of these were superconducting metals, where the bosons
are pairs of electrons with opposite spin. Many aspects of the behaviour of
superconductors may be understood qualitatively on the basis of the idea
that pairs of electrons form a Bose–Einstein condensate, but the properties
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of superconductors are quantitatively very different from those of a weakly-
interacting gas of pairs. The important physical point is that the binding
energy of a pair is small compared with typical atomic energies, and at the
temperature where the condensate disappears the pairs themselves break up.
This situation is to be contrasted with that for the atomic systems, where
the energy required to break up an atom is the ionization energy, which is of
order electron volts. This corresponds to temperatures of tens of thousands
of degrees, which are much higher than the temperatures for Bose–Einstein
condensation.

Many properties of high-temperature superconductors may be understood
in terms of Bose–Einstein condensation of pairs, in this case of holes rather
than electrons, in states having predominantly d-like symmetry in contrast
to the s-like symmetry of pairs in conventional metallic superconductors.
The rich variety of magnetic and other behaviour of the superfluid phases
of liquid 3He is again due to condensation of pairs of fermions, in this case
3He atoms in triplet spin states with p-wave symmetry. Considerable exper-
imental effort has been directed towards creating Bose–Einstein condensates
of excitons, which are bound states of an electron and a hole [20], and of
biexcitons, molecules made up of two excitons [21].

Bose–Einstein condensation of pairs of fermions is also observed exper-
imentally in atomic nuclei, where the effects of neutron–neutron, proton–
proton, and neutron–proton pairing may be seen in the excitation spec-
trum as well as in reduced moments of inertia. A significant difference
between nuclei and superconductors is that the size of a pair in bulk nu-
clear matter is large compared with the nuclear size, and consequently the
manifestations of Bose–Einstein condensation in nuclei are less dramatic
than they are in bulk systems. Theoretically, Bose–Einstein condensation
of nucleon pairs is expected to play an important role in the interiors of
neutron stars, and observations of glitches in the spin-down rate of pul-
sars have been interpreted in terms of neutron superfluidity. The possibility
of mesons, either pions or kaons, forming a Bose–Einstein condensate in
the cores of neutron stars has been widely discussed, since this would have
far-reaching consequences for theories of supernovae and the evolution of
neutron stars [22].

In the field of nuclear and particle physics the ideas of Bose–Einstein
condensation also find application in the understanding of the vacuum as
a condensate of quark–antiquark (uū, dd̄ and ss̄) pairs, the so-called chiral
condensate. This condensate gives rise to particle masses in much the same
way as the condensate of electron pairs in a superconductor gives rise to the
gap in the electronic excitation spectrum.
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This brief account of the rich variety of contexts in which the physics of
Bose–Einstein condensation plays a role, shows that an understanding of
the phenomenon is of importance in many branches of physics.

1.4 Overview

To assist the reader, we give here a ‘road map’ of the material we cover.
We begin, in Chapter 2, by discussing Bose–Einstein condensation for non-
interacting gases in a confining potential. This is useful for developing un-
derstanding of the phenomenon of Bose–Einstein condensation and for ap-
plication to experiment, since in dilute gases many quantities, such as the
transition temperature and the condensate fraction, are close to those pre-
dicted for a non-interacting gas. We also discuss the density profile and the
velocity distribution of an atomic cloud at zero temperature. When the ther-
mal energy kT exceeds the spacing between the energy levels of an atom in
the confining potential, the gas may be described semi-classically in terms of
a particle distribution function that depends on both position and momen-
tum. We employ the semi-classical approach to calculate thermodynamic
quantities. The effect of finite particle number on the transition temperature
is estimated, and Bose–Einstein condensation in lower-dimensional systems
is discussed.

In experiments to create a Bose–Einstein condensate in a dilute gas the
particles used have been primarily alkali atoms and hydrogen, whose spins
are non-zero. The new methods to trap and cool atoms that have been
developed in recent years make use of the basic atomic structure of these
atoms, which is the subject of Chapter 3. There we also study the energy
levels of an atom in a static magnetic field, which is a key element in the
physics of trapping, and discuss the atomic polarizability in an oscillating
electric field.

A major experimental breakthrough that opened up this field was the de-
velopment of laser cooling techniques. In contrast to so many other proposals
which in practice work less well than predicted theoretically, these turned
out to be far more effective than originally estimated. Chapter 4 describes
magnetic traps, the use of lasers in trapping and cooling, and evaporative
cooling, which is the key final stage in experiments to make Bose–Einstein
condensates.

In Chapter 5 we consider atomic interactions, which play a crucial role
in evaporative cooling and also determine many properties of the condensed
state. At low energies, interactions between particles are characterized by
the scattering length a, in terms of which the total scattering cross section
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at low energies is given by 8πa2 for identical bosons. At first sight, one
might expect that, since atomic sizes are typically of order the Bohr radius,
scattering lengths would also be of this order. In fact they are one or two
orders of magnitude larger for alkali atoms, and we shall show how this may
be understood in terms of the long-range part of the interatomic force, which
is due to the van der Waals interaction. We also show that the sign of the
effective interaction at low energies depends on the details of the short-range
part of the interaction. Following that we extend the theory to take into
account transitions between channels corresponding to the different hyper-
fine states for the two atoms. We then estimate rates of inelastic processes,
which are a mechanism for loss of atoms from traps, and present the theory
of Feshbach resonances, which may be used to tune atomic interactions by
varying the magnetic field. Finally we list values of the scattering lengths
for the alkali atoms currently under investigation.

The ground-state energy of clouds in a confining potential is the subject of
Chapter 6. While the scattering lengths for alkali atoms are large compared
with atomic dimensions, they are small compared with atomic separations
in gas clouds. As a consequence, the effects of atomic interactions in the
ground state may be calculated very reliably by using a pseudopotential pro-
portional to the scattering length. This provides the basis for a mean-field
description of the condensate, which leads to the Gross–Pitaevskii equation.
From this we calculate the energy using both variational methods and the
Thomas–Fermi approximation. When the atom–atom interaction is attrac-
tive, the system becomes unstable if the number of particles exceeds a critical
value, which we calculate in terms of the trap parameters and the scattering
length. We also consider the structure of the condensate at the surface of
a cloud, and the characteristic length for healing of the condensate wave
function.

In Chapter 7 we discuss the dynamics of the condensate at zero temper-
ature, treating the wave function of the condensate as a classical field. We
derive the coupled equations of motion for the condensate density and ve-
locity, and use them to determine the elementary excitations in a uniform
gas and in a trapped cloud. We describe methods for calculating collective
properties of clouds in traps. These include the Thomas–Fermi approxima-
tion and a variational approach based on the idea of collective coordinates.
The methods are applied to treat oscillations in both spherically-symmetric
and anisotropic traps, and the free expansion of the condensate. We show
that, as a result of the combined influence of non-linearity and dispersion,
there exist soliton solutions to the equations of motion for a Bose–Einstein
condensate.
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The microscopic, quantum-mechanical theory of the Bose gas is treated in
Chapter 8. We discuss the Bogoliubov approximation and show that it gives
the same excitation spectrum as that obtained from classical equations of
motion in Chapter 7. At higher temperatures thermal excitations deplete the
condensate, and to treat these situations we discuss the Hartree–Fock and
Popov approximations. Finally we analyse collisional shifts of spectral lines,
such as the 1S–2S two-photon absorption line in spin-polarized hydrogen,
which is used experimentally to probe the density of the gas, and lines used
as atomic clocks.

One of the characteristic features of a superfluid is its response to ro-
tation, in particular the occurrence of quantized vortices. We discuss in
Chapter 9 properties of vortices in atomic clouds and determine the criti-
cal angular velocity for a vortex state to be energetically favourable. We
also calculate the force on a moving vortex line from general hydrodynamic
considerations. The nature of the lowest-energy state for a given angular
momentum is considered, and we discuss the weak-coupling limit, in which
the interaction energy is small compared with the energy quantum of the
harmonic-oscillator potential.

In Chapter 10 we treat some basic aspects of superfluidity. The Landau
criterion for the onset of dissipation is discussed, and we introduce the two-
fluid picture, in which the condensate and the excitations may be regarded
as forming two interpenetrating fluids, each with temperature-dependent
densities. We calculate the damping of collective modes in a homogeneous
gas at low temperatures, where the dominant process is Landau damping.
As an application of the two-fluid picture we derive the dispersion relation
for the coupled sound-like modes, which are referred to as first and second
sound.

Chapter 11 deals with particles in traps at non-zero temperature. The
effects of interactions on the transition temperature and thermodynamic
properties are considered. We also discuss the coupled motion of the con-
densate and the excitations at temperatures below Tc. We then present
calculations for modes above Tc, both in the hydrodynamic regime, when
collisions are frequent, and in the collisionless regime, where we obtain the
mode attenuation from the kinetic equation for the particle distribution
function.

Chapter 12 discusses properties of mixtures of bosons, either different
bosonic isotopes, or different internal states of the same isotope. In the
former case, the theory may be developed along lines similar to those for
a single-component system. For mixtures of two different internal states
of the same isotope, which may be described by a spinor wave function,
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new possibilities arise because the number of atoms in each state is not
conserved. We derive results for the static and dynamic properties of such
mixtures. An interesting result is that for an antiferromagnetic interaction
between atomic spins, the simple Gross–Pitaevskii treatment fails, and the
ground state may be regarded as a Bose–Einstein condensate of pairs of
atoms, rather than of single atoms.

In Chapter 13 we take up a number of topics related to interference and
correlations in Bose–Einstein condensates and applications to matter wave
optics. First we describe interference between two Bose–Einstein condensed
clouds, and explore the reasons for the appearance of an interference pattern
even though the phase difference between the wave functions of particles in
the two clouds is not fixed initially. We then demonstrate the suppression
of density fluctuations in a Bose–Einstein condensed gas. Following that
we consider how properties of coherent matter waves may be investigated
by manipulating condensates with lasers. The final section considers the
question of how to characterize Bose–Einstein condensation microscopically.

Trapped Fermi gases are considered in Chapter 14. We first show that
interactions generally have less effect on static and dynamic properties of
fermions than they do for bosons, and we then calculate equilibrium prop-
erties of a free Fermi gas in a trap. The interaction can be important if
it is attractive, since at sufficiently low temperatures the fermions are then
expected to undergo a transition to a superfluid state similar to that for elec-
trons in a metallic superconductor. We derive expressions for the transition
temperature and the gap in the excitation spectrum at zero temperature,
and we demonstrate that they are suppressed due to the modification of
the interaction between two atoms by the presence of other atoms. We also
consider how the interaction between fermions is altered by the addition of
bosons and show that this can enhance the transition temperature. Finally
we briefly describe properties of sound modes in a superfluid Fermi gas,
since measurement of collective modes has been proposed as a probe of the
transition to a superfluid state.

Problems

Problem 1.1 Consider an ideal gas of 87Rb atoms at zero temperature,
confined by the harmonic-oscillator potential

V (r) =
1
2
mω2

0r
2,
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where m is the mass of a 87Rb atom. Take the oscillator frequency ω0 to be
given by ω0/2π = 150 Hz, which is a typical value for traps in current use.
Determine the ground-state density profile and estimate its width. Find the
root-mean-square momentum and velocity of a particle. What is the density
at the centre of the trap if there are 104 atoms?

Problem 1.2 Determine the density profile for the gas discussed in Prob-
lem 1.1 in the classical limit, when the temperature T is much higher than
the condensation temperature. Show that the central density may be written
as N/R3

th and determine Rth. At what temperature does the mean distance
between particles at the centre of the trap become equal to the thermal de
Broglie wavelength λT ? Compare the result with the transition temperature
(1.3).

Problem 1.3 Estimate the number of rotons contained in 1 cm3 of liquid
4He at temperatures T = 1 K and T = 100 mK at saturated vapour pressure.
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